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Fig. 3. (a) Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. = » x: obtained from [4]. (b)
Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. » = = : obtained from [4]. (c) Open-end
capacitance of shielded microstrip and the capacitance of the unshielded microstrip. » » » : obtained from [4]. (d) Open-end capacitance
of shielded microstrip and the capacitance of the unshielded microstrip. » » »: obtained from [4].

tance for a semi-infinite plate between ground planes
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The equivalent additional length A/, for the open-end discon-
tinuity in the shielded microstrip may be written as follows:

Al G
hz hz(C1+C2) '

)

III. RESULTS AND CONCLUSION

The variation of the fringe capacitance at the end of the k

shilded microstrip with the width-to-height ratio W/k, and the
shield heights ratio h, /h, using (1) and (3) for various substrate
dielectric materials with ¢, =1, 2.5, 4.2, and 9.6 are shown in Fig.
3(a)—(d), respectively.

The results are compared with the limit case of the unshielded
microstrip [4]. As the shield heights ratio k,/h, increases, the
values of the end fringe capacitance C,, approach those of the
unshielded microstrip.
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Extension of an Old Circulator Model

GYULA VESZELY

Abstract— An old circulator model consists of an ideal circulator with
parallel coupled resonant circuits. This paper determines the parameters of
this model at frequencies different from the resonant one. As a conse-
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quence a unified treatment of the stripline and lumped element circulators
is possible.

I. INTRODUCTION

An old circulator model is an ideal circulator with parallel
coupled resonant circuits [1], [2]. A quantitative model was given
in [3], but it was proved only for lumped element circulators.
Contrary to [3] we will neglect the frequency dependence of the
Polder tensor elements.

II. THE IMPEDANCE MATRIX AND ITS EQUIVALENT
NETWORK

The impedance matrix of symmetric three-port circulators:

Z, Z, Z
zZ=\2, 2, 7, (1)
Z, Z; Z,
where
Z,=Z*+Z"

Zzzz+e—12w/3 +Z—812ﬂ/3
Z3:Z+612"/3+Z_€_12"/3.

2)
Regarding the symmetry the in-phase impedance is zero. This is
necessary to the existence of the following model.

As it can be easily seen, if the relations

YAV . 1 1

2=j2/3 (Y*=Y") (3

z -z I nf
1 ZY+Z . I
=6 Ziz= e Y—6(Y +Y7) (4)

are fulfilled, the impedance matrix of the network in Fig. 1 is the
same as (1), (2). The network in Fig. 2 has the same impedance
matrix too, and it is more suitable for practical calculations.

The main results of this paper are the expressions (3), (4),
referring to the well-known networks in Figs. 1 and 2.

THE Y™ ADMITTANCE PARAMETERS IN TwWO-MODE
APPROXIMATION

IIL

For stripline circulators the network in Fig. 3 is valid, where
L™ and C can be found in [4], Q.=1/tand, where § is the
dielectric loss angle of the ferrite and by a perturbational calculus

liK—: 1

0* 2 1 poxH—1
l_K, 1 2 ’L//Z_K//2 1i§; 22

+?)5121_1 pop” Boxi—l

where p’ and «’ are the real parts, —p” and —«k” are the
imaginary parts of the Polder tensor elements, u, is the vacuum
permeability and x,, =1.84.

We want, that the network in Fig. 3 be valid for lumped
element circulators too. To achieve this it is suitable to draw in
the C,, external tuning capacity into Y™ as in Fig. 4. Conse-
quently the elements in Fig. 3 for lumped element circulators are
L™ can be found in [4], C=3C,, Or=1/tand, and Q*=
=) /(™Y

)

IV. REsuLts

The network in Fig. 2 is so simple, that closed form expressions
can be obtained for the scattering matrix elements. From these
expressions the following is derived.
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Fig. 4. Drawng the C,, external tuning capacity into ¥ *

a) The relative bandwidth belonging to §,, reflection is in the
lossless case

0= 2\/§|S11ff(7l)

Y13 AP

where n=«’/p’ and f(n)=(L*—L7)/(LT+L").
b) The bandwidth decreases under the effect of losses, al-
though this decreasing is very small (in typical cases 1-2 percent).
¢) The forward transmission loss, in decibels, is

(6)

1
|S13|~2'51f—(n)—Qp (7)

where
0,=(1/0"+1/0"+2/Q.) ™" (8)

For lumped element circulators if Q * =0 ~, then (8) is the same
as Konishi’s approximate result [1]. If Q "= Q ~, then (8) is the
correct expression.
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First-Order Bragg Interactions in a
Gyromagnetic-Dielectric Waveguide

MAKOTO TSUTSUMI, MEMBER, IEEE

Abstract— First-order Bragg interactions in a gyromagnetic-dielectric
waveguide are investigated theoretically. With the aid of a singular per-
turbation procedure the coupled mode equations governing the nature of
transverse electric wave interactions are derived. Bragg reflection char-
acteristics are shown numerically as a function of the magnetic field.

I. INTRODUCTION

Bragg interaction in a planer dielectric waveguide whose prop-
erties vary periodically is very interesting topic from both practi-
cal and theoretical points of view [1]. Recently Seshadri has
investigated asymmetric first-order Bragg interactions in a active
dielectric waveguide by a singular perturbation procedure using
multiple space scales [2]. The author has also studied the reflec-
tion of millimeter wave by a corrugated dielectric slab using a
singular boundary procedure, and has confirmed the theoretical
results by experiments [3].

This short paper investigates Bragg reflection characteristics in
a gyromagnetic-dielectric waveguide whose refractive indexes vary
sinusoidally in the direction of the wave propagation. Reflection
characteristics in such a waveguide will be more sensitive to the
change of the magnetic field than that of a corrugated
gyromagnetic slab [4]. With the aid of a singular perturbation
procedure using multiple scales the coupled mode equations are
derived, and Bragg reflection characteristics as a function of the
magnetic field are shown numerically.

II. ANALYSIS BY A SINGULAR PERTURBATION PROCEDURE

A cross-sectional view of the gyometrical configuration and the
system of coordinate used for the analysis are shown in Fig. 1(a).
The permeability and permittivity of the slab have a sinusoidal
variation in the y direction, a surface of the slab is grounded by a
metal plate, and the biasing magnetic field H, is applied to the z
direction. Such a slab structure can be realized by arranging a
ferrite slab and a dielectric slab alternatively, and some chemical
resins may be used for bonding these slabs, as shown in Fig. 1(b).

In millimeter-wave frequency the permeability tensor of the
ferrite medivm will be nearly equal to unity. At frequency 50
GHz with the magnetic field 5 Kg the diagonal and nondiagonal
components of the ferrite medium (YIG) are 1.03 and 0.1,
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System of coordinate used for analysis and structure of the periodic
gyromagnetic-dielectric waveguide.

Fig. 1

respectively [5]. Under this approximation the sinusoidal varia-
tion of the permeability tensor is assumed as

1+86u —jbx O
A(y)=no| jox 1+8p 0 (1)
0 0 1
where
Su=8jcos Ky
0k =08k cos Ky
2
_— (vio) MH,
(YﬂoHi)z_‘*’z
__ ﬁ‘oYMQ
K=——"F 5
(ywoH;) —w
and K=2x/A.

&8 represents a formal expansion parameter [2}, [6], and [7] and
A is the periodicity of the sinusoidal variation of the permeabil-
ity. The sinusoidal variation of the permittivity is also assumed as

e=¢,(1+8ncos Ky). )

In the above equations it is assumed that 8jz, 6%, and &7 are so
small that only the first-order effect of the sinusoidal variation of
the refractive indexes will be taken account.

We assume that the waves do not vary in the direction of the
bias field (8/9z=0) and that they vary sinusoidally with time
and angular frequency w, (exp(—jwt)). The perturbed electric
fields due to a sinusoidal variation of indexes can be expressed as

EzzEzo(x’ yO’y1)+8Ezl(xr YOyyl)
Ez:E—zo(xﬁyO’yl)-'-s-E_'zl(xsyO!yl) (3)

where E, and E, , are the unperturbed zero-order fields in the
slab and the vacuum, respectively, £, and E, are the first-order
correction terms due to the slight perturbation, and they are
function of y, =y and y, =8y [6]. The angular frequency w in the
vicinity of the Bragg frequency w, can be expanded as

w=wy+8w,. 4)
The chain rule of the differentiation yields [6]
d/dy=23/dy,+83 /3y,. (5)
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