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Fig. 3. (a) Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. * * *: obtained from [4]. (b)

Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstnp. * . *: obtained from [4]. (c) Open-end

capacitance of shielded microstrip and the capacitance of the unshielded microstrip. * * ,: obtained from [4]. (d) Open-end capacitance

of shielded microstrip and the capacitance of the unshielded rnicrostrip

tance for a semi-infinite plate between ground planes

coci=o.441hici, i=l,z. (4)

The equivalent additional length A 10Cfor the open-end discon-

tinuity in the shielded microstrip may be written as follows:

Aloc _ Coc

h2 h2(C, +C2) “

III. RESULTS AND CONCLUSION

(5)

The variation of the fringe capacitance at the end of the

shilded microstnp with the width-to-height ratio W/h ~ and the

shield heights ratio h, /h ~ using (1) and (3) for various substrate

dielectric materials with c,= 1,2.5,4.’2, and 9.6 are shown in Fig.

3(a)–(d), respectively.

The results are compared with the limit case of the unshielded

microstrip [4]. As the shield heights ratio h, /h ~ increases, the

values of the end fringe capacitance C.C approach those of the

unshielded microstnp.

[1]

[2]

[3]

[4]

* , *: obtained from [4]
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Extension of an Old Circulator Model

GYULA VESZELY

A Mract- An old circulator model consists of an ideal circulator with

parallel coupled resonant circuits. Tfds paper determines the parameters of

this model at frequencies different from the resonant one. As a conse-
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quence a unified treatment of the stripline and lumped element circulators

is possible.

I. INTRODUCTION

An old circulator model is an ideal circulator with parallel

coupled resonant circuits [1], [2]. Aquantitative model was given

in [3], but it was proved only for lumped element circulators.

Contrary to [3] we will neglect the frequency dependence of the

Polder tensor elements.

II. THE IMPEDANCE mTRIX AND ITS EQUIVALENT

NETWORK

The impedance matrix of sym~metric three-port circulators:

[1
z, Z* Z3

2-= Z3 Z1 Z2 (1)

Z2 Z3 z,

where

z,=z++z -

.Z2 =Z+e-J2”/3 +Z–eJ2W/3

Z3 =Z+eJ2”/:3 +Z-e ‘J2”/3. (2)

Regarding the symmetry the in-phase impedance is zero, This is

necessary to the existence of the following model.

As it can be easily seen, if the relations

z+z- 11
z=J2@z-_z+’ i.e., — = —(Y+-Y-) (3)

z j2@

1 z++z -y. –
(j Z+z - ~ i.e., Y=~(Y++Y-) (4)

are fulfilled, the impedance matrix of the network in Fig. 1 is the

same as (1), (2). The network in Fig. 2 has the same impedance

matrix too, and it is more suitable for practical calculations.

The main results of this paper are the expressions (3), (4),

referring to the well-known networks in Figs. 1 and 2.

III. THE Y= ADMITTANCE PARAMETERS IN TWO-MODE

APPROXIMATION

For stnpline circulators the network in Fig. 3 is valid, where

L* and C can be found in [4], Qc = l/tan8, where 8 is the

dielectric loss angle of the ferrite and by a perturbational calculus

where p’ and ~’ are the real parts, —p” and —ic” are the

imaginary parts of the Polder tensor elements, p ~ is the vacuum

permeability and x,, = 1.84.

We want, that the network in Fig. 3 be valid for lumped

element circulators too. To achieve this it is suitable to draw in

the C,X external tuning capacity into Y* as in Fig. 4. Conse-

quently the elements in Fig. 3 for lumped element circulators are

L* can be found in [4], C=3C,X, Qc= l/t~8, ~d Q*=

(/Lo*)’\”.

IV. RIESULTS

The network in Fig. 2 is so simple, that closed form expressions

can be obtained for the scattering matrix elements. From these

expressions the following is derived.

?-
U3 ?._

Fig, 1. Network model of circulator,

Fig. 2 Eqmvalent network model

Fig 3. Y * admittances.

Fig, 4. Drawing the C,. external tuning capacity into 1-*

a) The relative bandwidth belonging to S1, reflection is in the

lossless case

(6)

where q=tc’ip’ and f(q)= (L+- L-)/( L++L-).

b) The bandwidth decreases under the effect of losses, al-

though this decreasing is very small (in typical cases 1–2 percent).

c) The forward transmission loss, in decibels, is

ls,31=2.51~
f(n)Qp

(7)

where

Q,=(VQ++b’Q -+2/Qc)-’. (8)

For lumped element circulators if Q + = Q -, then (8) is the s~e

as Konishi’s approximate result [1]. If Q + + Q –, then (8) is the

correct expression.

[1]

[2]
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First-Order Bragg Interactions in a

Gyromagnetic-Dielectric Waveguide

MAKOTO TSUTSUMI, MEMBER, IEEE

,4 bstract— First-order Bragg interactions in a gyromagnetic-dielectric

waveguide are investigated theoretically. Witfr the aid of a singular per-

turbation procedure the coupled mode equations governing the nature of

transverse electric wave interactions are derived. Bragg reflection char-

acteristics are showu rmrnericatly as a function of the magnetic field.

I. INTRODUCTION

Bragg interaction in a planer dielectric waveguide whose prop-
erties vary periodically is very interesting topic from both practi-
cal and theoretical points of view [1]. Recently Seshadri has
investigated asymmetric first-order Bragg interactions in a active
dielectric waveguide by a singular perturbation procedure using
multiple space scales [2]. The author has also studied the reflec-
tion of millimeter wave by a corrugated dielectric slab using a
singular boundary procedure, and has confirmed the theoretical
results by experiments [3].

This short paper investigates Bragg reflection characteristics in
a gyromagnetic-dielectric waveguide whose refractive indexes vary
sinusoidally in the direction of the wave propagation. Reflection
characteristics in such a waveguide will be more sensitive to the
change of the magnetic field than that of a corrugated
gyromagnetic slab [4]. With the aid of a singular perturbation
procedure using multiple scales the coupled mode equations are
derived, and Bragg reflection characteristics as a function of the
magnetic field are shown numerically.

II. ANALYSiS BY A SINGULAR PERTURBATION PROCEDURE

A cross-sectional view of the geometrical configuration and the

system of coordinate used for the analysis are shown in Fig. l(a).

The permeability and permittivity of the slab have a sinusoidal

variation in they direction, a surface of the slab is grounded by a

metal plate, and the biasing magnetic field H, is applied to the z

direction. Such a slab structure can be realized by arranging a

ferrite slab and a dielectric slab alternatively, and some chemical

resins may be used for bonding these slabs, as shown in Fig. l(b).

In millimeter-wave frequency the permeability tensor of the

ferrite medium will be nearly equal to unity. At frequency 50

GHz with the magnetic field 5 Kg the diagonal and nondiagonal

components of the ferrite medium (YIG) are 1.03 and 0.1,
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Fig. 1 System of coordinate used for analysis and structure of the periodic

gyromagnetic-dlelectnc waveguide.

respectively [5]. Under this approximation the sinusoidal varia-
tion of the permeability tensor is assumed as

‘(’)=’O[’-?‘$!! ‘1)
where

8p= 8jicos Ky

8n=8iicos Ky

(YPO )2W~=
(ypolli)z-k+

and K= 2w-/A.

8 represents a formal expansion parameter [2], [6], and [7] and

A is the periodicity of the sinusoidal variation of the permeabil-

ity. The sinusoidal variation of the perrrtittivity is also assumed as

t=cf(l+8qcos Ky). (2)

In the above equations it is assumed that 8$, 8ii, and 8q are so

small that only the first-order effect of the &usoidal variation of

the refractive indexes will be taken account.

We assume that the waves do not vary in the direction of the

bias field ( ti/ilz = O) and that they vary sinusoidally with time

and angular frequency w, (exp ( –jo t)). The perturbed electric

fields due to a sinusoidal variation of indexes can be expressed as

Ez=E20(x, yo, y,)+& Yzl(x, yo, y,)

Ez=E-zo(x, yo, y1)+&7z,(x, yo, y1) (3)

where E,O and ~ZO are the unperturbed zero-order fields in the

slab and the vacuum, respectively, EZ, and EZ, are the first-order

correction terms due to the slight perturbation, and they are

function of y. =y and y, = r$y [6]. The angular frequency u in the

vicinity of the Bragg frequency O. can be expanded as

m=oo+tia,. (4)

The chain rule of the differentiation yields [6]

aiay= alayo+aa/ay,. (5)
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