

Fig. 3. (a) Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. \* \* \*: obtained from [4]. (b) Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. \* \* \*: obtained from [4]. (c) Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. \* \* \*: obtained from [4]. (d) Open-end capacitance of shielded microstrip and the capacitance of the unshielded microstrip. \* \* \*: obtained from [4].

tance for a semi-infinite plate between ground planes

$$C_{oci} = 0.441 h_i C_i, \quad i=1,2. \quad (4)$$

The equivalent additional length  $\Delta l_{oc}$  for the open-end discontinuity in the shielded microstrip may be written as follows:

$$\frac{\Delta l_{oc}}{h_2} = \frac{C_{oc}}{h_2(C_1 + C_2)}. \quad (5)$$

### III. RESULTS AND CONCLUSION

The variation of the fringe capacitance at the end of the shielded microstrip with the width-to-height ratio  $W/h_2$  and the shield heights ratio  $h_1/h_2$  using (1) and (3) for various substrate dielectric materials with  $\epsilon_r = 1, 2.5, 4.2$ , and  $9.6$  are shown in Fig. 3(a)-(d), respectively.

The results are compared with the limit case of the unshielded microstrip [4]. As the shield heights ratio  $h_1/h_2$  increases, the values of the end fringe capacitance  $C_{oc}$  approach those of the unshielded microstrip.

REFERENCES

- [1] S. S. Bedair and M. I. Sobhy, "Accurate formulae for the computer-aided design of shielded microstrip circuits," *Proc. Inst. Elec. Eng.*, pt. H, MOA, pp. 305-308, Dec. 1980.
- [2] H. M. Altschuler and A. A. Oliner, "Discontinuities in the center conductor of symmetric strip transmission line," *IRE Trans. Microwave Theory Tech.*, vol. MTT-8, pp. 328-339, May 1960.
- [3] S. B. Cohn, "Shielded coupled-strip line," *IRE Trans. Microwave Theory Tech.*, vol. MTT-3, pp. 29-38, Oct. 1955.
- [4] P. Silvester and P. Benedek, "Equivalent capacitances of microstrip open circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 511-516, Aug. 1972.

### Extension of an Old Circulator Model

GYULA VESZELY

**Abstract**—An old circulator model consists of an ideal circulator with parallel coupled resonant circuits. This paper determines the parameters of this model at frequencies different from the resonant one. As a conse-

Manuscript received October 29, 1980; revised March 12, 1981.

The author is with the Department of Theoretical Electricity, Technical University, 1521 Budapest, Hungary.

quence a unified treatment of the stripline and lumped element circulators is possible.

## I. INTRODUCTION

An old circulator model is an ideal circulator with parallel coupled resonant circuits [1], [2]. A quantitative model was given in [3], but it was proved only for lumped element circulators. Contrary to [3] we will neglect the frequency dependence of the Polder tensor elements.

## II. THE IMPEDANCE MATRIX AND ITS EQUIVALENT NETWORK

The impedance matrix of symmetric three-port circulators:

$$Z = \begin{bmatrix} Z_1 & Z_2 & Z_3 \\ Z_3 & Z_1 & Z_2 \\ Z_2 & Z_3 & Z_1 \end{bmatrix} \quad (1)$$

where

$$\begin{aligned} Z_1 &= Z^+ + Z^- \\ Z_2 &= Z^+ e^{-j2\pi/3} + Z^- e^{j2\pi/3} \\ Z_3 &= Z^+ e^{j2\pi/3} + Z^- e^{-j2\pi/3}. \end{aligned} \quad (2)$$

Regarding the symmetry the in-phase impedance is zero. This is necessary to the existence of the following model.

As it can be easily seen, if the relations

$$z = j2\sqrt{3} \frac{Z^+ Z^-}{Z^- - Z^+}, \quad \text{i.e., } \frac{1}{z} = \frac{1}{j2\sqrt{3}} (Y^+ - Y^-) \quad (3)$$

$$Y = \frac{1}{6} \frac{Z^+ + Z^-}{Z^+ - Z^-}, \quad \text{i.e., } Y = \frac{1}{6} (Y^+ + Y^-) \quad (4)$$

are fulfilled, the impedance matrix of the network in Fig. 1 is the same as (1), (2). The network in Fig. 2 has the same impedance matrix too, and it is more suitable for practical calculations.

The main results of this paper are the expressions (3), (4), referring to the well-known networks in Figs. 1 and 2.

## III. THE $Y^\pm$ ADMITTANCE PARAMETERS IN TWO-MODE APPROXIMATION

For stripline circulators the network in Fig. 3 is valid, where  $L^\pm$  and  $C$  can be found in [4],  $Q_C = 1/\tan\delta$ , where  $\delta$  is the dielectric loss angle of the ferrite and by a perturbational calculus

$$Q^\pm = \frac{2}{\left(1 \mp \frac{\kappa'}{\mu'} \frac{1}{x_{11}^2 - 1}\right)^2} \cdot \frac{1}{\frac{\mu''^2 - \kappa''^2}{\mu_0 \mu''}} \cdot \frac{1 \pm \frac{\kappa'}{\mu'} \frac{1}{x_{11}^2 - 1}}{1 \pm \frac{\kappa''}{\mu''} \frac{2}{x_{11}^2 - 1}} \quad (5)$$

where  $\mu'$  and  $\kappa'$  are the real parts,  $-\mu''$  and  $-\kappa''$  are the imaginary parts of the Polder tensor elements,  $\mu_0$  is the vacuum permeability and  $x_{11} = 1.84$ .

We want, that the network in Fig. 3 be valid for lumped element circulators too. To achieve this it is suitable to draw in the  $C_{ex}$  external tuning capacity into  $Y^\pm$  as in Fig. 4. Consequently the elements in Fig. 3 for lumped element circulators are  $L^\pm$  can be found in [4],  $C = 3C_{ex}$ ,  $Q_C = 1/\tan\delta$ , and  $Q^\pm = (\mu^\pm)' / (\mu^\pm)''$ .

## IV. RESULTS

The network in Fig. 2 is so simple, that closed form expressions can be obtained for the scattering matrix elements. From these expressions the following is derived.

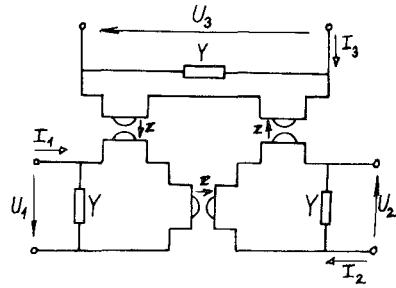


Fig. 1. Network model of circulator.

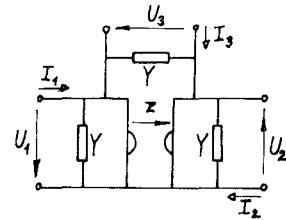


Fig. 2. Equivalent network model.

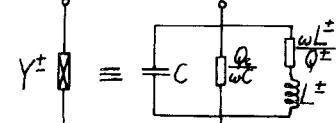


Fig. 3.  $Y^\pm$  admittances.

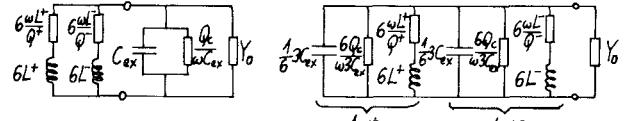


Fig. 4. Drawing the  $C_{ex}$  external tuning capacity into  $Y^\pm$

a) The relative bandwidth belonging to  $S_{11}$  reflection is in the lossless case

$$\omega = \frac{2\sqrt{3} |S_{11}| f(\eta)}{\sqrt{1 + \frac{3}{4} [f(\eta)]^2}} \quad (6)$$

where  $\eta = \kappa' / \mu'$  and  $f(\eta) = (L^+ - L^-) / (L^+ + L^-)$ .

b) The bandwidth decreases under the effect of losses, although this decreasing is very small (in typical cases 1–2 percent).

c) The forward transmission loss, in decibels, is

$$|S_{13}| \approx 2.51 \frac{1}{f(\eta) Q_p} \quad (7)$$

where

$$Q_p = (1/Q^+ + 1/Q^- + 2/Q_C)^{-1} \quad (8)$$

For lumped element circulators if  $Q^+ = Q^-$ , then (8) is the same as Konishi's approximate result [1]. If  $Q^+ \neq Q^-$ , then (8) is the correct expression.

## REFERENCES

- [1] Y. Konishi, "Lumped element  $Y$  circulator," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 852–864, Nov. 1965.
- [2] H. Bosma, "A general model for junction circulators; choice of magnetization and bias field," *IEEE Trans. Magnetics*, vol. MAG-4, pp. 587–596, Sept 1968.

- [3] J. O. Bergman and C. Christensen, "Equivalent circuit for a lumped element Y circulator," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 308-310, May 1968.
- [4] G. Bittar and Gy. Veszely, "A general equivalent network of the input impedance of symmetric three-port circulators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-28, pp. 807-808, July 1980.

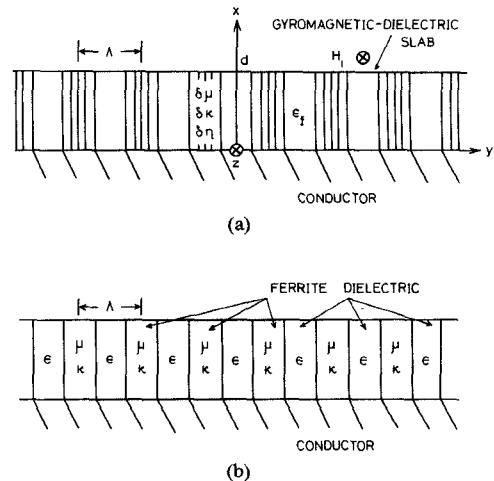


Fig. 1 System of coordinate used for analysis and structure of the periodic gyromagnetic-dielectric waveguide.

## First-Order Bragg Interactions in a Gyromagnetic-Dielectric Waveguide

MAKOTO TSUTSUMI, MEMBER, IEEE

**Abstract**—First-order Bragg interactions in a gyromagnetic-dielectric waveguide are investigated theoretically. With the aid of a singular perturbation procedure the coupled mode equations governing the nature of transverse electric wave interactions are derived. Bragg reflection characteristics are shown numerically as a function of the magnetic field.

### I. INTRODUCTION

Bragg interaction in a planer dielectric waveguide whose properties vary periodically is very interesting topic from both practical and theoretical points of view [1]. Recently Seshadri has investigated asymmetric first-order Bragg interactions in a active dielectric waveguide by a singular perturbation procedure using multiple space scales [2]. The author has also studied the reflection of millimeter wave by a corrugated dielectric slab using a singular boundary procedure, and has confirmed the theoretical results by experiments [3].

This short paper investigates Bragg reflection characteristics in a gyromagnetic-dielectric waveguide whose refractive indexes vary sinusoidally in the direction of the wave propagation. Reflection characteristics in such a waveguide will be more sensitive to the change of the magnetic field than that of a corrugated gyromagnetic slab [4]. With the aid of a singular perturbation procedure using multiple scales the coupled mode equations are derived, and Bragg reflection characteristics as a function of the magnetic field are shown numerically.

### II. ANALYSIS BY A SINGULAR PERTURBATION PROCEDURE

A cross-sectional view of the geometrical configuration and the system of coordinate used for the analysis are shown in Fig. 1(a). The permeability and permittivity of the slab have a sinusoidal variation in the  $y$  direction, a surface of the slab is grounded by a metal plate, and the biasing magnetic field  $H_i$  is applied to the  $z$  direction. Such a slab structure can be realized by arranging a ferrite slab and a dielectric slab alternatively, and some chemical resins may be used for bonding these slabs, as shown in Fig. 1(b).

In millimeter-wave frequency the permeability tensor of the ferrite medium will be nearly equal to unity. At frequency 50 GHz with the magnetic field 5 Kg the diagonal and nondiagonal components of the ferrite medium (YIG) are 1.03 and 0.1,

respectively [5]. Under this approximation the sinusoidal variation of the permeability tensor is assumed as

$$\hat{\mu}(y) = \mu_0 \begin{bmatrix} 1 + \delta\mu & -j\delta\kappa & 0 \\ j\delta\kappa & 1 + \delta\mu & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (1)$$

where

$$\begin{aligned} \delta\mu &= \bar{\mu} \cos Ky \\ \delta\kappa &= \bar{\kappa} \cos Ky \\ \bar{\mu} &= \frac{(\gamma\mu_0)^2 M H_i}{(\gamma\mu_0 H_i)^2 - \omega^2} \\ \bar{\kappa} &= \frac{\mu_0 \gamma M \omega}{(\gamma\mu_0 H_i)^2 - \omega^2} \end{aligned}$$

and  $K = 2\pi/\Lambda$ .

$\delta$  represents a formal expansion parameter [2], [6], and [7] and  $\Lambda$  is the periodicity of the sinusoidal variation of the permeability. The sinusoidal variation of the permittivity is also assumed as

$$\epsilon = \epsilon_0 (1 + \delta\eta \cos Ky). \quad (2)$$

In the above equations it is assumed that  $\delta\bar{\mu}$ ,  $\delta\bar{\kappa}$ , and  $\delta\eta$  are so small that only the first-order effect of the sinusoidal variation of the refractive indexes will be taken account.

We assume that the waves do not vary in the direction of the bias field ( $\partial/\partial z = 0$ ) and that they vary sinusoidally with time and angular frequency  $\omega$ ,  $\exp(-j\omega t)$ . The perturbed electric fields due to a sinusoidal variation of indexes can be expressed as

$$\begin{aligned} E_z &= E_{z_0}(x, y_0, y_1) + \delta E_{z_1}(x, y_0, y_1) \\ \bar{E}_z &= \bar{E}_{z_0}(x, y_0, y_1) + \delta \bar{E}_{z_1}(x, y_0, y_1) \end{aligned} \quad (3)$$

where  $E_{z_0}$  and  $\bar{E}_{z_0}$  are the unperturbed zero-order fields in the slab and the vacuum, respectively,  $E_{z_1}$  and  $\bar{E}_{z_1}$  are the first-order correction terms due to the slight perturbation, and they are function of  $y_0 = y$  and  $y_1 = \delta y$  [6]. The angular frequency  $\omega$  in the vicinity of the Bragg frequency  $\omega_0$  can be expanded as

$$\omega = \omega_0 + \delta\omega_1. \quad (4)$$

The chain rule of the differentiation yields [6]

$$\partial/\partial y = \partial/\partial y_0 + \delta\partial/\partial y_1. \quad (5)$$

Manuscript received October 8, 1980; revised April 10, 1981.

M. Tsutsumi is with the Faculty of Engineering, Osaka University, Suita 565, Japan.